

IGARSS 2002 Toronto, Canada 24-28 June 2002

# NPOESS Satellite Cal/Val Panel Microwave Sensor Design - Atmosphere

Christopher S. Ruf
University of Michigan
Ann Arbor, MI
734-764-6561 (v), 734-764-5137 (f)
cruf@umich.edu



#### **Outline**

- Vicarious Cold Reference Calibration
  - TOPEX Microwave Radiometer detection of drift in 18
     GHz channel calibration
  - SSM/I verification of sharp lower bound on TB distribution
- Case Study Recent Cal/Val of the Jason Microwave Radiometer
  - Vicarious Cold Reference
  - Amazon Rain Forest and Sahara Desert Hot Reference
  - The value of tandem TMR/JMR measurements



# Vicarious Cold Reference - Minimum TB seen by window channels

- Minimum TB conditions
  - No Clouds or Wind
  - Low humidity
  - Optimum SST (vs. freq.)
  - (weak SSS dependence)
- TB versus SST shown at 18 and 37 GHz nadir-viewing using Ellison et al. [1998] ocean permittivity model with no clouds or wind







#### Sample Cold TB Histogram





## **Extension of Vicarious Cold Reference** from Nadir to Oblique Incidence

- TB at off-nadir angles also have minimizing SSTs
- *e.g.* 37 GHz @ 53.1 deg:
  - SST=16-17C @ V-pol
  - SST=20-21C @ H-pol
- Corresponding IWVs
  - 0.37 cm @ 16.5 C
  - 0.40 cm @ 20.5 C
- Corresponding TBmin
  - 128.0K (H-pol)
  - 206.6K (V-pol)







### Test of Vicarious Cold Reference at 37 GHz, 53.1 deg using SSM/I Histograms

- Recent SSM/I histogram analysis [Colton & Poe, IEEE TGARS, 37(1), 418-439, 1999]
- 5 platforms over '91-'97; nonprecipitating & over ocean
- 37H lower bound agrees well
  - Pure H-pol is lowest TB
- 37V lower bound ~4K lower (even with IWV=0 cm)
  - Any H-pol mixing will lower TB
  - Possible uncorrected polarization mixing?
  - Good H-pol lower bound => maybe scan angle dependent polarization mixing







#### **JMR-TMR Cold TB Difference Obs**

#### Daily JMR - TMR Cold Reference TB versus Day of 2002



• Average Cold TB Differences over all days shown (sinusoidal yaw state only) to get baseline offsets between TMR and JMR TB calibrations at cold end of range



### TMR Hot TB Reference The Sahara Desert

Daily Averaged TMR TB's over Sahara Desert Region versus Day of 2002  $\{15 < Latitude < 30, 3 < Longitude < 9\}$ 



- Hot TB is spectrally flat
- Rise in TB (at all frequencies) is likely seasonal (note: TBs shown use APC algorithm corrected for over-land conditions)



#### **JMR-TMR Hot TB Reference**





• Average Hot TB Differences over all days shown (sinusoidal yaw state only) to get baseline offsets between TMR and JMR TB calibrations at hot end of range



### TB Calibration JMR TB Calibration Correction

- *Ad hoc* correction algorithm is a linear interpolation between cold and hot bias corrections for intermediate TB levels
- Adjustments to actual Level 0&1 algorithms will be implemented via corrections to hardware path loss and antenna beam fraction coefficients
  - First look indicates that the adjustments needed are of reasonable magnitude



#### JMR TB Calibration Correction, cont.

#### Correction Algorithm:

$$TB_{corrected} = TB_{GDR} - \Delta TB_{cold} - (TB_{GDR} - TB_{cold}) \frac{\Delta TB_{hot} - \Delta TB_{cold}}{TB_{hot} - TB_{cold}}$$

#### Algorithm coefficients:

| Coefficients in JMR TB correction algorithm |          |          |          |
|---------------------------------------------|----------|----------|----------|
|                                             | 18.7 GHz | 23.8 GHz | 34.0 GHz |
| $\Delta \mathrm{TB}_{\mathrm{cold}}$        | 1.54     | -1.31    | 0.46     |
| $\mathrm{TB}_{\mathrm{cold}}$               | 125.3    | 134.6    | 147.9    |
| $\Delta \mathrm{TB}_{\mathrm{hot}}$         | -4.0     | -2.1     | -10.0    |
| TB <sub>hot</sub>                           | 278.5    | 278.5    | 278.5    |



#### **JMR-TMR PD Comparison Before JMR TB Corrections**





- Large PD errors present at all levels of PD
- PD errors largest at low (driest) PDs



#### JMR-TMR PD Comparison After JMR TB Corrections

#### Cycle Averaged Corrected JMR - TMR Path Delay versus JMR Cycle



- PD biases have been largely removed after JMR TB corrections at low, medium and high ranges of PD during sinusoidal yaw state
- Large PD biases are associated with fixed yaw state
  - TOPEX fixed-tosinusoidal yaw maneuver (F-S) occurs in early cycle 7
  - TOPEX S-F occurs in mid cycle 12



### JMR v. RaOb PD Comparison after JMR TB Corrections

#### Corrected JMR Path Delay versus RAOB Path Delay



• Open ocean island RaObs within 315 km and 6 hours of closest approach overpass during DOY 15-134 of 2002, clear skies only, N=150 samples



### Evidence of TB Shifts by both TMR and JMR due to s/c Yaw State



—— 18.7-18.0 —— 23.8-21.0 —— 34.0-37.0

### TOPEX fixed/sinusoidal yaw

- TMR TBs change <0.5K
- Changes in opposite directions between channels

### Jason-1 fixed/sinusoidal yaw

- JMR TBs change 1-2K
- Changes in same direction between channels



#### Yaw Anomaly Closer Looks at Its Behavior

- JMR Cold Reference TBs Shift with Yaw State
  - Independent confirmation that doesn't involve TMR
- JMR-TMR TBs are strongly correlated with key JMR hardware physical temperatures
  - Level 0 loss coefficients need to be adjusted



## JMR\_TB34 – TMR\_TB37 is strongly correlated with feedhorn temperature –

path loss coefficients need correction





# JMR feed horn temperature shift during yaw maneuver

